2024년01월02일

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

CO9K 11/77 (2006.01) **H01L 33/50** (2010.01) **H05B 33/14** (2006.01)

(52) CPC특허분류

CO9K 11/7761 (2013.01) **HO1L** 33/50 (2013.01)

(21) 출원번호 **10-2021-0117794**

(22) 출원일자 2021년09월03일

심사청구일자 **2021년09월03일** (65) 공개번호 **10-2023-0035186**

(43) 공개일자 **2023년03월13일**

(56) 선행기술조사문헌 JP06555672 B2 (뒷면에 계속)

전체 청구항 수 : 총 10 항

(11) 등록번호

(45) 공고일자

10-2619834

(24) 등록일자 2023년12월27일

(73) 특허권자

세종대학교산학협력단

서울특별시 광진구 능동로 209 (군자동, 세종대학교)

(72) 발명자

박경순

서울특별시 강남구 언주로 107, 212동 303호 (개 포동, 현대2차아파트)

정건우

(74) 대리인

인천광역시 부평구 경원대로 1269 현대1차아파트 116동 104호

(뒷면에 계속)

특허법인이상

심사관: 한정석

(54) 발명의 명칭 Sm이 도핑된 주황색 발광 산화물 형광체


(57) 요 약

하기 화학식 1로 표시되는 가넷 결정구조를 갖는 형광체의 제조 및 발광특성을 제공한다.

[화학식 1]

La_{1-v}KCaGa₃ZrVO₁₂: ySm³⁺

상기 화학식 1에서, y는 0 초과 1 미만으로, 구체적으로는 0.01 내지 0.2 더 구체적으로는 0.02 내지 0.14이다. $\mathbf{H} \ \mathbf{E} \ \mathbf{F} = \mathbf{E} \ \mathbf{E}$

(52) CPC특허분류

H05B 33/14 (2013.01)

(72) 발명자

김동훈

서울특별시 도봉구 도당로 116, 101동 201호 (방학 동, 거성학마을아파트)

홍호용

인천광역시 미추홀구 인주대로306번길 18 가동 40 7호 (56) 선행기술조사문헌

KR1020140043123 A

JP2007112951 A

부경대학교대학원 공학석사학위논문 2016 JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS (2021) 31 695-703

MOLECULES 2020 25 542

JP2012041538 A

명 세 서

청구범위

청구항 1

하기 화학식 1로 표시되는 가넷 결정구조를 갖는 형광체:

[화학식 1]

La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺

상기 화학식 1에서, y는 0.02 내지 0.14이다.

청구항 2

제1항에 있어서,

상기 화학식 1에서 La는 +3의 원자가를 갖고, K는 +1의 원자가를 갖고, Ca는 +2의 원자가를 갖고, Ga는 +3의 원자가를 갖고, Zr는 +4의 원자가를 갖고, V는 +5의 원자가를 갖는, 가넷 결정구조를 갖는 형광체.

청구항 3

제1항에 있어서,

상기 형광체는 입방정 구조를 갖고, 공간군은 Ia3d이고, 단일상을 갖는, 가넷 결정구조를 갖는 형광체.

청구항 4

제1항에 있어서,

상기 형광체는 Sm³⁺의 ⁶H_{5/2} → ⁶P_{3/2} 전이에 의해 여기되는, 가넷 결정구조를 갖는 형광체.

청구항 5

제1항 또는 제4항에 있어서,

상기 형광체는 Sm³⁺의 ⁴G_{5/2} → ⁶H_{5/2}, ⁴G_{5/2} → ⁶H_{7/2}, ⁴G_{5/2} → ⁶H_{9/2} 및 ⁴G_{5/2} → ⁶H_{11/2} 전이에 의해 발광하는, 가녯 결정구조를 갖는 형광체.

청구항 6

제1항에 있어서,

상기 형광체는 1931 CIE 색 좌표(x, y)에서 x는 0.5893 내지 0.5910이고, y는 0.4090 내지 0.4107인 주황색 영역의 광을 방출하는, 가넷 결정구조를 갖는 형광체.

청구항 7

제1항에 있어서,

상기 화학식 1에서, y는 0.02 내지 0.14인, 가넷 결정구조를 갖는 형광체.

청구항 8

제1항에 있어서,

상기 화학식 1에서, y는 0.04 내지 0.12인, 가넷 결정구조를 갖는 형광체.

청구항 9

제1항에 있어서,

상기 화학식 1에서, y는 0.04 내지 0.10인, 가넷 결정구조를 갖는 형광체.

청구항 10

제1항에 있어서,

상기 화학식 1에서, y는 0.06 내지 0.08인, 가넷 결정구조를 갖는 형광체.

발명의 설명

기술분야

[0001] 본 발명은 형광체에 관한 것으로, 더욱 상세하게는 가넷 구조를 갖는 형광체에 관한 것이다.

배경기술

- [0002] 형광체는 모체(host)와 활성제(activator)로 구성된다. 이러한 형광체는 여러 용도가 있으며 발광다이오드 (Light Emitting Diode; LED)에서 주로 사용되고 있다.
- [0003] 현재 LED용 상용 형광체는 가넷 구조의 Y₃Al₅O₁₂:Ce 이며, 이는 황색광을 방출하며, 청색 LED 칩과 조합하여 백 색 LED를 구현할 수 있다. 백색 LED는 형광체의 발광 품질에 크게 의존하여 성능이 결정되므로, 백색 LED를 구 현하기 위해서는 고품질의 형광체 제조가 중요하다.

선행기술문헌

특허문허

[0004] (특허문헌 0001) 대한민국 공개특허공보 제2014-0124041호

발명의 내용

해결하려는 과제

[0005] 본 발명이 해결하고자 하는 과제는, 발광특성이 우수한 가넷 결정구조를 갖는 형광체를 제공함에 있다.

과제의 해결 수단

- [0006] 상기 기술적 과제를 이루기 위하여, 본 발명의 일 측면은 하기 화학식 1로 표시되는 가넷 결정구조를 갖는 형광 체를 제공한다.
- [0007] [화학식 1]
- [0008] $\operatorname{La}_{1-y}\operatorname{KCaGa_3ZrVO_{12}}: y\operatorname{Sm}^{3+}$
- [0009] 상기 화학식 1에서, y는 0.02 내지 0.14이다.
- [0010] 상기 화학식 1에서 La는 +3의 원자가를 갖고, K는 +1의 원자가를 갖고, Ca는 +2의 원자가를 갖고, Ga는 +3의 원자가를 갖고, Zr는 +4의 원자가를 갖고, V는 +5의 원자가를 가질 수 있다.
- [0011] 상기 형광체는 입방정 구조를 갖고, 공간군은 *[a3 d]* 이고, 단일상을 가질 수 있다.
- [0012] 상기 형광체는 Sm^{3+} 의 ${}^{6}H_{5/2} \to {}^{6}P_{3/2}$ 전이에 의해 여기될 수 있다. 또한, 상기 형광체는 Sm^{3+} 의 ${}^{4}G_{5/2} \to {}^{6}H_{5/2}$, ${}^{4}G_{5/2} \to {}^{6}H_{$

서 주황색 영역의 광을 방출할 수 있다.

[0013] 상기 화학식 1에서, y는 0.02 내지 0.14, 구체적으로, y는 0.04 내지 0.12, 더 구체적으로 y는 0.04 내지 0.10 일 수 있다. 일 예로서, y는 0.06 내지 0.08일 수 있다.

발명의 효과

- [0014] 본 발명에 따른 가넷 결정구조를 갖는 형광체는 새로운 조성을 갖고 우수한 발광특성을 나타낸다.
- [0015] 본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.

도면의 간단한 설명

[0016] 도 1은 제조예로부터 얻어진 LaKCaGa₃Zr VO₁₂의 XRD Rietveld 정련 결과를 나타낸 그래프이다.

도 2는 LaKCaGa₃ZrVO₁₂의 단위셀을 나타낸 개략도이다.

도 3은 제조예로부터 얻어진 La_{1-v}KCaGa₃ZrVO₁₂:ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 XRD 회절 패턴을 나타낸다.

도 4는 제조예에서 얻어진 La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 XPS survey 스펙트럼(a), La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 각 원소들의 고분해능 XPS 스펙트럼을 나타낸다((b)-(i)).

도 5는 제조예에서 얻어진 $\text{La}_{1-y}\text{KCaGa}_3\text{ZrVO}_{12}$: $y\text{Sm}^{3+}(0.02 \leq y \leq 0.14)$ 형광체로부터 613nm 발광파장 하에서 얻은 여기파장의 강도를 나타낸 여기 스펙트럼이다.

도 6은 제조예에서 얻어진 $\text{La}_{1-y}\text{KCaGa}_3\text{ZrVO}_{12}$: $y\text{Sm}^{3+}(0.02 \le y \le 0.14)$ 형광체로부터 407nm 여기파장 하에서 얻은 발광파장의 강도를 나타낸 발광 스펙트럼이다.

도 7은 La_{1-v}KCaGa₃ZrVO₁₂: ySm³⁺(0.06 ≤ y ≤ 0.14) 형광체에서 log(C)와 log(I/C)의 관계 그래프이다.

도 8은 제조예에서 얻어진 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 1931 CIE 색 좌표(x, y)를 나타낸다.

발명을 실시하기 위한 구체적인 내용

- [0017] 본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
- [0018] 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
- [0019] 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일 반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인의미로 해석되지 않는다.
- [0020] 이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.

- [0022] 본 발명의 일 측면은 하기 화학식 1로 표시되는 가넷 결정구조를 갖는 형광체를 제공한다.
- [0023] [화학식 1]
- [0024] $\operatorname{La}_{1-y}\operatorname{KCaGa}_3\operatorname{Zr}\operatorname{VO}_{12}\colon y\operatorname{Sm}^{3+}$
- [0025] 상기 화학식 1에서, y는 0 초과 1 미만으로, 구체적으로는 0.01 내지 0.2 더 구체적으로는 0.02 내지 0.14이다.
- [0026] 가넷 결정 구조는 일반적으로 X₃Y₂Z₃O₁₂의 구조식을 갖는 구조로서, 여기서, X는 십이면체 자리(dodecahedral site), Y는 팔면체 자리(octahedral site), Z는 사면체 자리(tetrahedral site)를 의미한다. 상기 화학식 1로 나타낸 형광체에서 X에 해당하는 원소는 La, K, 및 Ca이고, Y에 해당하는 원소는 Ga 이며, Z에 해당하는 원소는 Ga, Zr, 및 V일 수 있다. 상기 La는 +3의 원자가를 갖고, K는 +1의 원자가를 갖고, Ca는 +2의 원자가를 갖고, Ga는 +3의 원자가를 갖고, Zr는 +4의 원자가를 갖고, V는 +5의 원자가를 가질 수 있다.
- [0027] 상기 화학식 1로 나타낸 가넷 결정구조를 갖는 형광체는 입방정 구조를 갖고 공간군은 *Ia3 d* 일 수 있으며, 단일상을 가질 수 있다.
- [0029] 상기 화학식 1로 나타낸 가넷 결정구조를 갖는 형광체는 Sm³+의 $^{6}H_{5/2} \rightarrow ^{6}P_{3/2}$ 전이에 의해 에너지를 흡수할 수 있다. 구체적으로, 약 407 nm에서 가장 큰 강도를 가지는 여기 피크를 나타낼 수 있다. 또한, 407 nm를 여기광으로 하였을 때, Sm³+의 $^{4}G_{5/2} \rightarrow ^{6}H_{5/2}$, $^{4}G_{5/2} \rightarrow ^{6}H_{7/2}$, $^{4}G_{5/2} \rightarrow ^{6}H_{9/2}$ 및 $^{4}G_{5/2} \rightarrow ^{6}H_{11/2}$ 전이에 의해 566, 613, 648 및 708 nm 파장에서 발광 피크들이 관찰되며, 주황색 영역의 광을 방출할 수 있다. 따라서, 상기 화학식 1로 나타낸 가넷 결정구조를 갖는 형광체는 근자외선을 여기원으로 하였을 때 주황색 발광을 할 수 있다. 근자외선의 여기원은 일 예로서, InGaN계 발광다이오드일 수 있다.
- [0030] 특히, Sm³⁺ 농도가 0.04 내지 0.12인 경우는 Sm³⁺ 농도가 0.02 또는 0.14인 경우 대비 우수한 피크 강도를 나타 내며, 나아가 Sm³⁺ 농도가 0.04 내지 0.10인 경우, 더 나아가 Sm³⁺ 농도가 0.06 내지 0.08인 경우, 더 우수한 피크 강도를 나타낼 수 있다.
- [0032] 상기 화학식 1로 나타낸 가넷 결정구조를 갖는 형광체는 고상법을 통해 제조할 수 있다. 구체적으로, 각 금속원 소의 전구체들 분말을 각 조성에 맞게 칭량 및 혼합할 수 있다. 혼합한 출발원료 분말을 알루미나 도가니에 넣고, 이를 전기로에서 500-800 ℃까지 승온한 후, 이 온도에서 5-10시간 동안 하소할 수 있다. 이를 전기로에서 1,000-1,500 ℃까지 승온한 후, 이 온도에서 10-24 시간 동안 소둔할 수 있다. 소둔이 끝난 시편을 분쇄하여 La_{1-v}KCaGa₃ZrVO₁₂: ySm³⁺ 형광체를 제조할 수 있다.
- [0034] 이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.

[0036] <u>가넷 구조 형광체의 제조예</u>

- [0037] La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 는 고상법 공정을 통해 제조되었다. 상기 공정에서 사용된 출발 물질은 다음과 같다: La₂O₃ (High Purity Chemical, 99.99%), K₂CO₃ (High Purity Chemical, 99%), CaCO₃ (High Purity Chemical, 99%), Ga₂O₃ (High Purity Chemical, 99.9%), ZrO₂ (High Purity Chemical, 98%), NH₄VO₃ (High Purity Chemical, 99%), Sm₂O₃ (TS Chemical, 99.9%). 적당량의 상기 출발 물질이 청량후 혼합되었고, 상기 혼합된 분말은 알루미나 도가니로 옮겨져 전기로에서 600 ℃까지 승온하였고 이 온도에서 5시간 동안 하소하였다. 이후 전기로에서 1,300 ℃까지 승온하였고, 이 온도에서 18 시간 동안 소둔하였다. 소둔이 끝난 시편을 유발과 막자로 분쇄하여 La_{1-v}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체를 제조하였다.
- [0039] 도 1은 제조예로부터 얻어진 LaKCaGa₃ZrVO₁₂의 XRD Rietveld 정련 결과를 나타낸 그래프이다.
- [0040] 도 1을 참조하면, LaKCaGa₃ZrVO₁₂의 Rietveld 정련 결과는 선행 연구자들에 의해 발표된 가넷구조 Sr₃Sc₂Ge₃O₁₂(JCPDS No. 29-1313)의 XRD 결과와 일치하였다.

丑 1

[0042]

[0048]

並 1		
	$LaKCaGa_3ZrVO_{12}$	
결정구조	Cubic	
공간 군	Ia3 d	
격자 상수		
a = b = c (Å)	12.7625	
$a = \beta = \gamma (^{\circ})$	90.0	
Unit cell volume (ų)	2078.8	
신뢰도 인자		
$R_{ ext{wp}}$ (%)	8.94	
$R_{ m exp}$ (%)	5.78	
S^2	2.40	

- [0044] 도 2는 LaKCaGa₃ZrVO₁₂의 단위셀을 나타낸 개략도이다. 도 2의 개략도는 위의 XRD Rietveld 정련을 통해 얻은 결정학적 데이터와 VESTA 소프트웨어를 이용하여 얻었다.
- [0045] 도 2를 참조하면, 3개의 다면체(12 면체, 8 면체 및 4 면체)가 존재하는 것을 볼 수 있다. 12 면체 중심에 Bi, K 및 Ca 원자가 있고, 8 면체의 중심에 Ga 원자가 있으며, 4 면체의 중심에는 Ga, Zr 및 V 원자가 있는 것을 볼 수 있다.
- [0047] 도 3은 제조예로부터 얻어진 La_{1-v}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 XRD 회절 패턴을 나타낸다.

도 3을 참조하면, 측정한 La_{1-v}KCaGa₃ZrVO₁₂:ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 회절 패턴과 공지된 가넷구조

- Sr₃Sc₂Ge₃O₁₂의 표준 XRD 회절 패턴(JCPDS No. 29-1313)을 비교한 결과, 서로 두 XRD 회절 패턴이 잘 일치하였다. 이들 결과를 통해 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체는 입방정 가넷 결정구조와 Ia₃ d 공간 그룹을 가지며, 단일 상이 형성되었음을 알 수 있다. 이 그림에서 Sm³⁺ 농도가 증가할 때 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 모든 회절 피크는 고각에 위치하는 것을 볼 수 있다. 이는 La³⁺에 도핑된 Sm³⁺의 이온 반경(1.079 Å, CN = 8)이 La³⁺의 이온 반경(1.16 Å, CN = 8)보다 작아서 격자 상수가 감소하였기 때문이라고 추정되었다. 이들 XRD 결과는 Sm³⁺ 이온이 La³⁺ 자리에 성공적으로 도핑되었음을 의미한다.
- [0050] 도 4는 제조예에서 얻어진 La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 XPS survey 스펙트럼(a), La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 각 원소들의 고분해능 XPS 스펙트럼을 나타낸다((b)-(i)). (b) La 3d 오비탈, (c) K 2p 오비탈, (d) Ca 2p 오비탈, (e) Ga 3p 오비탈, (f) Zr 3d 오비탈, (g) V 2p 오비탈, (h) Sm 3d 오비탈, 및 (i) 0 1s 오비탈.
- [0051] 도 4를 참조하면, La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 XPS survey 스펙트럼(a)에서 La, K, Ca, Ga, Zr, V, 0

및 Sm 원소의 오비탈에 의한 피크를 볼 수 있다.

- [0052] La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 La 3*d* 오비탈의 고분해능 XPS 스펙트럼(b)에서, 스핀-오비탈 커플링 효과에 의해 La 3*d*_{3/2}과 La 3*d*_{5/2} 오비탈과 그들의 위성 피크로 분리된 것을 볼 수 있다. La 3*d*_{3/2}과 La 3*d*_{3/2} 위성 피크의 결합 에너지는 각각 849.8, 852.4 및 854.3 eV이며, La 3*d*_{5/2}와 3*d*_{5/2} 위성 피크의 결합 에너지는 각각 833.0, 835.0 및 837.3 eV이었다. 두 오비탈 간 결합 에너지 차이(ΔE_{La} = 16.8, 17.4 및 17.0 eV)는 공지된 La³⁺ 3*d*_{3/2}과 La³⁺ 3*d*_{5/2} 오비탈 간 결합 에너지 차이(16.8 eV)와 유사하였다. 이 결과로부터, La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 La 원소는 +3의 원자가를 가지고 있음을 알 수 있다.
- [0053] La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 K 2p, Ca 2p 및 Ga 2p 오비탈의 고분해능 XPS 스펙트럼(c, d, e)에서, K, Ca 및 Ga 원소의 2p 오비탈도 스핀-오비탈 커플링 효과에 의해 2p_{1/2}과 2p_{3/2} 오비탈로 분리된 것을 볼 수 있다. K 2p_{1/2}과 K 2p_{3/2} 오비탈의 결합 에너지는 각각 293.8와 291.1 eV이었으며, Ca 2p_{1/2}과 Ca 2p_{3/2} 오비탈의 결합 에너지는 각각 348.5와 345.1 eV이었고, Ga 2p_{1/2}과 Ga 2p_{3/2} 오비탈의 결합 에너지는 각각 1143.1와 1116.2 eV이었다. 이들 값은 알려진 K⁺, Ca²⁺ 및 Ga³⁺의 2p_{1/2}과 2p_{3/2} 오비탈의 결합 에너지와 매우 유사하다.
- [0054] La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체의 Zr 3*d* 오비탈의 고분해능 XPS 스펙트럼(f)에서, Zr 3*d* 오비탈은 3*d*_{3/2}과 3*d*_{5/2} 오비탈로 분리되었으며, Zr 3*d*_{3/2}과 Zr 3*d*_{5/2} 오비탈의 결합 에너지는 각각 182.6 eV와 180.2 eV이었다. 이들 값은 알려진 Zr⁴⁺ 3*d* 오비탈의 결합 에너지와 일치한다.
- [0055] V는 전이 금속으로 +3, +4 및 +5의 원자가를 가질 수 있다. 그러나, La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체로부터 얻은 V 2p 오비탈의 고분해능 XPS 스펙트럼(g)에서, V 2p_{1/2} 오비탈의 결합 에너지는 각각 522.9, 521.8 eV이며, V 2p_{3/2} 오비탈의 결합 에너지는 각각 515.2, 514.4 eV이다. 두 오비탈 간 결합 에너지 차이(ΔE_{Zr} = 7.7와 7.4 eV)는 알려진 V⁵⁺ 2p_{1/2}과 V⁵⁺ 2p_{3/2}오비탈 간 결합 에너지 차이(7.7 eV)와 유사하였다. 이들 결과로부터 La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 V 원소는 +5 원자가를 가지고 있음을 알 수 있다.
- [0056] La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체로부터 얻은 Sm 3*d* 오비탈의 고분해능 XPS 스펙트럼(h)에서, Sm 3*d*_{3/2} 오비탈과 Sm 3*d*_{5/2} 오비탈의 결합 에너지는 각각 1116.3 eV와 1070.6 eV이다. 두 오비탈 간 결합 에너지 차이($\Delta E_{Sm} = 45.7 \text{ eV}$)는 알려진 Sm³⁺ 3*d*_{3/2}과 Sm³⁺ 3*d*_{5/2} 오비탈 간 결합 에너지 차이(45.7 eV)와 일치하였다. 또한, Sm 3*d*_{3/2}과 Sm 3*d*_{5/2} 오비탈에 의한 두 피크는 대칭을 이루고 있으므로, La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 Sm 원소는 한 가지 원자가를 가지고 있음을 알 수 있다. 이들 결과로부터 La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체에 있는 Sm 원소의 원자가는 +3임을 알 수 있다.
- [0057] La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체로부터 얻은 0 1s 오비탈의 고분해능 XPS 스펙트럼(i)에서, 0의 오비탈은 1s 오비탈 하나만이 발견 되었으며, 결합에너지 피크가 비대칭인 것을 확인하였다. 이 비대칭인 결합 에너지 피크를 분해하여 얻은 결합 에너지는 각각 528.7 eV와 530.0 eV이었다. 이들 값은 알려진 0 1s 오비탈의 결합 에너지와 일치하는 것을 볼 수 있다.
- [0058] 위에서 설명한 고분해능 XPS 스펙트럼으로부터 얻은 La_{0.94}KCaGa₃ZrVO₁₂:0.06Sm³⁺ 형광체를 구성하는 원소(La, K, Ca, Ga, Zr, V, Sm 및 0)의 결합 에너지와 두 오비탈 간 결합 에너지 차이를 요약하여 표 2에 나타내었다.

¥ 2

[0059]

[0062]

[0064]

	# 2	
오비탈	결합에너지 (eV)	두 오비탈 간 결합 에너지 차이(eV)
La 3d _{5/2} (E ₁)	833.0, 835.0, 837.3	-
La 3d _{3/2} (E ₂)	849.8, 852.4, 854.3	-
$\Delta E_{La} (E_2-E_1)$	-	16.8, 17.4, 17.0
$K 2p_{3/2} (E_3)$	291.1	-
K $2p_{1/2}$ (E ₄)	293.8	-
$\Delta E_K (E_4-E_3)$	_	2.7
Ca $2p_{3/2}$ (E ₅)	345.1	-
Ca $2p_{1/2}$ (E ₆)	348.5	-
$\Delta E_{Ca} (E_6-E_5)$	_	3.4
Ga $2p_{3/2}$ (E ₇)	1116.2	-
Ga $2p_{1/2}$ (E ₈)	1143.1	-
ΔE_{Ga} (E_8 – E_7)	_	26.9
Zr 3d _{5/2} (E ₉)	180.2	-
Zr 3d _{3/2} (E ₁₀)	182.6	-
ΔE_{Zr} (E_{10} – E_{9})	_	2.4
$V 2p_{3/2} (E_{11})$	515.2, 514.4	-
$V 2p_{1/2} (E_{12})$	522.9, 521.8	-
$\Delta E_{V} (E_{12}-E_{11})$	_	7.7, 7.4
Sm $3d_{5/2}$ (E ₁₃)	1070.6	-
Sm 3d _{3/2} (E ₁₄)	1116.3	-
ΔE_{Sm} (E_{14} – E_{13})	-	45.7
0 1s	528.7, 530.0	-
	$\begin{array}{c} \text{La } 3d_{5/2} \; (\text{E}_1) \\ \text{La } 3d_{3/2} \; (\text{E}_2) \\ \Delta \text{E}_{\text{La}} \; (\text{E}_2 - \text{E}_1) \\ \text{K } 2p_{3/2} \; (\text{E}_3) \\ \text{K } 2p_{1/2} \; (\text{E}_4) \\ \Delta \text{E}_{\text{K}} \; (\text{E}_4 - \text{E}_3) \\ \text{Ca } 2p_{3/2} \; (\text{E}_5) \\ \text{Ca } 2p_{1/2} \; (\text{E}_6) \\ \Delta \text{E}_{\text{Ca}} \; (\text{E}_6 - \text{E}_5) \\ \text{Ga } 2p_{3/2} \; (\text{E}_7) \\ \text{Ga } 2p_{1/2} \; (\text{E}_8) \\ \Delta \text{E}_{\text{Ga}} \; (\text{E}_8 - \text{E}_7) \\ \text{Zr } 3d_{5/2} \; (\text{E}_9) \\ \text{Zr } 3d_{3/2} \; (\text{E}_{10}) \\ \Delta \text{E}_{\text{Zr}} \; (\text{E}_{10} - \text{E}_9) \\ \text{V } 2p_{3/2} \; (\text{E}_{11}) \\ \text{V } 2p_{1/2} \; (\text{E}_{12}) \\ \Delta \text{E}_{\text{V}} \; (\text{E}_{12} - \text{E}_{11}) \\ \text{Sm } 3d_{5/2} \; (\text{E}_{13}) \\ \text{Sm } 3d_{3/2} \; (\text{E}_{14}) \\ \Delta \text{E}_{\text{Sm}} \; (\text{E}_{14} - \text{E}_{13}) \\ \end{array}$	오비탈 결합에너지 (eV) La $3d_{5/2}$ (E ₁) 833.0, 835.0, 837.3 La $3d_{3/2}$ (E ₂) 849.8, 852.4, 854.3 ΔE_{La} (E ₂ -E ₁) - K $2p_{3/2}$ (E ₃) 291.1 K $2p_{1/2}$ (E ₄) 293.8 ΔE_{K} (E ₄ -E ₃) - Ca $2p_{3/2}$ (E ₅) 345.1 Ca $2p_{1/2}$ (E ₆) 348.5 ΔE_{Ca} (E ₆ -E ₅) - Ga $2p_{3/2}$ (E ₇) 1116.2 Ga $2p_{1/2}$ (E ₈) 1143.1 ΔE_{Ga} (E ₈ -E ₇) - Zr $3d_{5/2}$ (E ₉) 180.2 Zr $3d_{3/2}$ (E ₁₀) 182.6 ΔE_{Zr} (E ₁₀ -E ₉) - V $2p_{3/2}$ (E ₁₁) 515.2, 514.4 V $2p_{1/2}$ (E ₁₂) 522.9, 521.8 ΔE_{V} (E ₁₂ -E ₁₁) - Sm $3d_{5/2}$ (E ₁₃) 1070.6 Sm $3d_{3/2}$ (E ₁₄) 1116.3 ΔE_{Sm} (E ₁₄ -E ₁₃) -

[0061] 도 5는 제조예에서 얻어진 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체로부터 613nm 발광파장 하에서 얻은 여기파장의 강도를 나타낸 여기 스펙트럼이다.

도 5를 참조하면, 300-385 nm 파장 영역에서 넓은 폭과 매우 낮은 강도를 갖는 여기 피크와 365 와 379 nm 파장에서 낮은 강도를 가지는 두 개의 여기 피크가 중첩되어 있는 것을 관찰할 수 있다. 넓은 폭과 매우 낮은 강도를 갖는 여기 피크는 모체에 있는 (VO₄)³⁻ 이온에 의한 피크이며, 365 및 379 nm 파장에 있는 여기 피크는 각각 Sm³+의 ⁶H_{5/2} → ⁴D_{3/2}와 ⁶H_{5/2} → ⁴P_{7/2} 전이에 의한 여기 피크이다. 385-500 nm 파장에서 Sm³+의 ⁶H_{5/2} → ⁶P_{3/2}, ⁶H_{5/2} → ⁴I_{13/2}, ⁶H_{5/2} → ⁴I_{11/2} 및 ⁶H_{5/2} → ⁴I_{9/2} 전이 때문에 407, 420, 440, 467, 481 및 490 nm 파장에서 여기 피크들이 관찰되었다. 이들 여기 피크 중 ⁶H_{5/2} → ⁶P_{3/2} 전이(407 nm)에 의한 여기 피크의 강도가 가장 큰 것을 볼 수 있다. 이는 InGaN계 근자외선 LED의 발광 파장에 근접하므로, InGaN계 근자외선 LED를 La_{1-y}KCaGa₃ZrVO₁₂: ySm³+(0.02 ≤ y ≤ 0.14) 형광체의 여기 원으로 사용 가능할 것으로 추정된다. Sm³+ 농도가 0.06까지 증가함에 따라 여기 피크의 강도가 증가하였으며, 그 이상의 Sm³+ 농도에서는 Sm³+ 농도가 증가함에 따라 여기 피크의 강도가 감소하는 것을 볼 수 있다. 특히, Sm³+ 농도가 0.04 내지 0.12인 경우는 Sm³+ 농도가 0.02 또는 0.14인 경우 대비 우수한 피크 강도를 나타내며, 나아가 Sm³+ 농도가 0.04 내지 0.10인 경우, 더 나아가 Sm³+ 농도가 0.06 내지 0.08인 경우, 더 우수한 피크 강도를 나타낸다.

도 6은 제조예에서 얻어진 La_{1-v}KCaGa₃ZrVO₁₂:ySm ³⁺(0.02 ≤ y ≤ 0.14) 형광체의 발광 스펙트럼이다. 이 발광 스

펙트럼은 407 nm 파장을 여기 원으로 하여 얻어졌다.

[0065] 도 6을 참조하면, Sm³*의 $^4G_{5/2} o ^6H_{5/2}$, $^4G_{5/2} o ^6H_{7/2}$, $^4G_{5/2} o ^6H_{9/2}$ 및 $^4G_{5/2} o ^6H_{11/2}$ 전이 때문에 566, 613, 648 및 708 nm 파장에서 발광 피크들이 관찰되었다. Sm³* 농도가 0.06까지 증가할 때 La_{1-y}KCaGa₃ZrVO₁₂: ySm³* (0.02 ≤ y ≤ 0.14) 형광체의 발광 강도가 증가하였으며, 그 이상의 Sm³* 농도에서는 Sm³* 농도가 증가할 때 발광 강도가 감소하였다. 이러한 발광 강도 감소는 모체에 과도한 Sm³*의 도핑으로 인해 Sm³* 이온 간 거리가 가까워져 농도 소광이 발생하였기 때문이라고 추정되었다. Sm³* 이온의 발광 전이 중에서 자기 쌍극자 $^4G_{5/2} o ^6H_{5/2}$ 전이(566 nm)로 인해 황색 발광을 하며, 전기 쌍극자 $^4G_{5/2} o ^6H_{9/2}$ 와 $^4G_{5/2} o ^6H_{11/2}$ 전이(648과 708 nm)로 인해 적색 발광을 한다. $^4G_{5/2} o ^6H_{7/2}$ 전이와 전기 쌍극자 전이가 혼합된 발광 전이로, 이 전이로 인해 주황색 발광을 하게 된다. 또한, 자기 쌍극자 전이와 전기 쌍극자 전이가 혼합된 발광 전이로, 이 전이로 인해 주황색 발광을 하게 된다. 또한, 자기 쌍극자 ⁴G_{5/2} → $^6H_{5/2}$ 전이에 의한 황색 발광 강도가 전기 쌍극자 $^4G_{5/2} o ^6H_{9/2}$ 전이에 의한 황색 발광 강도가 증가한다. 반면에 Sm³* 이온이 결정격자의 비반전 대칭 자리 (inversion symmetry site)에 위치할 때, 자기 쌍극자 전이에 의한 황색 발광 강도가 증가한다. 반면에 Sm³* 이온이 결정격자의 비반전 대칭 자리(non-inversion symmetry site)에 위치할 때, 전기 쌍극자 전이에 의한 작색 발광 전이가 증가한다.

[0066] La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체에서 하기 수학식 1에 있는 V는 2078.8 Å³, x_c는 0.06 및 N은 8이며, 이들 값을 하기 수학식 1에 대입하여 산출한 Sm³⁺ 이온들 사이에 임계 거리 R_c는 20.22 Å이다. 산출한 Sm³⁺ 이온들 사이에 임계 거리는 5 Å보다 훨씬 크므로, La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.06 ≤ y ≤ 0.14) 형광체에서 일어난 농도 소광은 전기적 다극 상호작용 때문이라고 추정되었다. 하기 수학식 2를 이용하여 얻은 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.06 ≤ y ≤ 0.14) 형광체에서 log(C)와 log(I/C)의 관계 그래프를 도 7에 나타내었다. 이 log(C)와 log(I/C)의 관계로부터 얻은 기울기(-s/3)는 -1.443이므로, s 값은 4.329이다. 이 값은 6에 가장 가깝기 때문에, La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.06 ≤ y ≤ 0.14) 형광체에서 쌍극자-쌍극자 상호작용 때문에 농도 소광이 일어난 것으로 추정되었다.

[0067] [수학식 1]

$$R_c = 2 \left(\frac{3 \, V}{4 \pi x_c N} \right)^{1/3}$$

[0068]

[0069] 상기 수학식 1에서, R_c는 Sm³⁺ 이온들 간 임계거리, x_c는 농도소광이 일어나는 Sm³⁺의 임계 농도, V는 단위 셀의 체적, N은 단위 셀에 있는 양이온의 수이다.

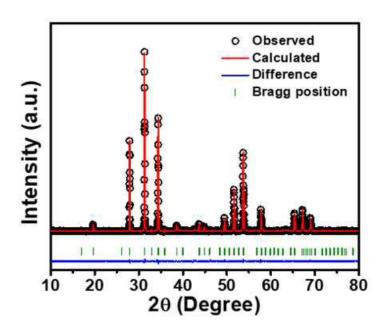
[0070] [수학식 2]

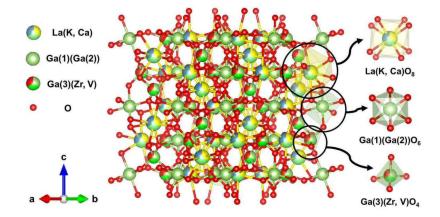
$$\log\left(\frac{I}{C}\right) = \log\left(\frac{k}{\beta}\right) - \frac{s}{3}\log\left(C\right)$$

[0071]

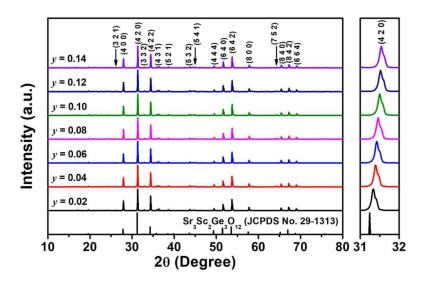
[0072] 상기 수학식 2에서, C는 활성제의 이온 농도이고, I는 Sm³⁺ 이온에 의한 발광 강도이고, k 및 β는 재료의 고유 상수이고, s는 Sm³⁺ 이온간 상호작용을 결정하는 인자이다.

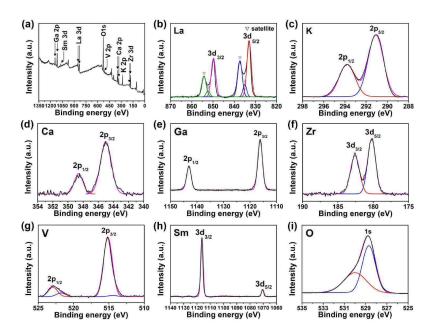
[0073] 도 8은 제조예에서 얻어진 La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 1931 CIE 색 좌표(x, y)를 나타낸다. 이는 발광 스펙트럼과 CIE 1931 calculator를 이용하여 얻었다.

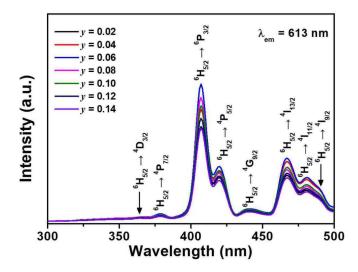

[0074] 도 8을 참조하면, La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체에서 y = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 및 0.14일 때, 1931 CIE 색 좌표(x, y)는 각각 (0.5893 0.4107), (0.5897, 0.4103), (0.5910, 0.4090), (0.5908, 0.4091), (0.5900, 0.4099), (0.5896, 0.4102) 및 (0.5893, 0.4105)이다. La_{1-y}KCaGa₃ZrVO₁₂: ySm³⁺(0.02 ≤ y ≤ 0.14) 형광체의 1931 CIE 색 좌표(x, y)는 주황색 영역에 놓여 있는 것을 볼 수 있다.


이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.

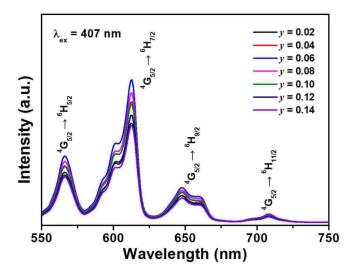
도면

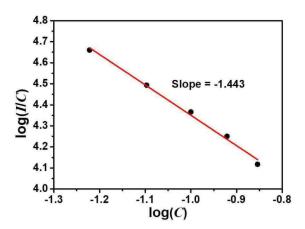

[0076]

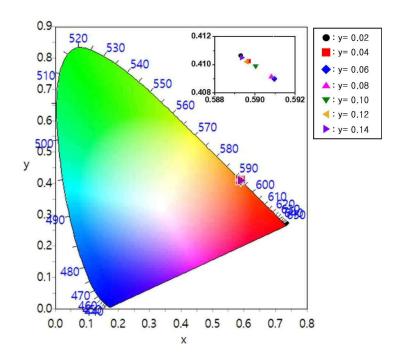

도면1



도면3






도면5

도면6

